Skip Navigation
Search

Rocket Launchers

Author(s): Tadzia GrandPré, PhD
Showing Results for: experiment Return to Presentation

Glucose Homeostasis Research Timeline

George Ebers found the Ebers Papyrus in Egypt in 1872. The papyrus is the first known written description of diabetes, and while it is dated to 1552 BC, it contains references contained that date to earlier than 3000 BC. In the 1st Century AD, Arateus famously explained diabetes as the "melting down of flesh and limbs into urine." Early physicians understood that polyuria (frequent urination) was a symptom of diabetes, but it was not until 1776 that Matthew Dobson was able to show that the sweet taste of a diabetic's urine was attributed to glucose in the urine.

The "Experimental Period" of diabetes began in the mid-19th Century. The efforts of Claude Bernard, who studied the workings of the liver and pancreas in digestion; the identification by Paul Langerhans of cells of unknown function residing within the pancreas (later called "Islets of Langerhans"); and the pancreatectomy of a dog that resulted in fatal diabetes greatly expanded the understanding of diabetes and glucose homeostasis.

Research continued, and in 1921, insulin was used successfully to treat a pancreatectomized dog. The next year, a 14-year-old diabetic boy also was treated successfully with insulin. This resulted in the Nobel Prize for Medicine for Frederick G. Banting and John James Richard Macleod (both from the University of Toronto). Banting shared his monetary prize with his 22-year old research assistant, Charles Best. Macleod shared his winnings with a biochemist, James Collip. 

With the advent of molecular biology, research in diabetes led to new pharmaceutical approaches to treatment. In 1983, the first biosynthetic insulin became commercially available, increasing supply and making production relatively cheap, compared to harvesting insulin from pigs and cows. Then, in 2001, the initial draft of the Human genome sequence was completed. This detailed knowledge of man's genetic composition is leading to new discoveries, but with the complex nature of diabetes (multiple genes, environmental component), the disease still remains largely a mystery.