Skip Navigation

Calculating Exponential Growth

Calculating Exponential Growth
  • Grades:
  • Length: 60 Minutes

Overview

Students read an essay, "It's All in the Numbers," about the rapid spread of HIV particles in the body, and learn how to calculate exponential growth using pennies to model HIV particles.

The essay portion of the activity contains stark facts that may be difficult to absorb. Depending upon students’ grade and maturity levels, the essay may be used as teacher background information instead of student reading material. The activity is most appropriate for use with students in grades 6-12.

This activity is from The Science of HIV/AIDS Teacher's Guide. The guide also is available in print format.

This work was developed in partnership with the Baylor-UT Houston Center for AIDS Research, an NIH-funded program.

Teacher Background

Under favorable conditions and with sufficient time and resources, populations of all organisms, including infectious agents like viruses, have the potential to increase dramatically over time. Even slow-growing organisms can reach astounding population sizes if reproduction is unchecked. Charles Darwin used elephants, which breed very slowly, as a hypothetical example. Beginning with two elephants, which generally produce only six offspring during a reproductive span of 60 years, an elephant population would number only 54 individuals after 200 years. However, after 1,000 years, the population would have grown to 86,000,000 elephants!

Now consider another example, in which a parent cell divides into two daughter cells every 10 minutes. After 10 minutes, there would be two cells; after 20 minutes, four cells; after 30 minutes, eight cells, and so on. After three hours, there would be close to one million cells. When quantity increases by a fixed percentage at regular time intervals, we have what is referred to as exponential growth. On a graph, exponential growth is represented by an upward curve, not a straight line. In addition to the example of cell division, exponential growth can be observed in the accumulation of compound interest, and in the increasing levels of CO2 in the atmosphere. Untreated, HIV also is capable of exponential growth once it begins to replicate and spread within the human body.

Depending upon students' grade and maturity levels, the essay, "It's All In the Numbers," may be used as teacher background information or as a student reading assignment. It is especially effective when read aloud.


Content Advisory 

See the following resources for additional information about HIV/AIDS and advice for discussing HIV/AIDS with students.

  • National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), offers resources on understanding HIV/AIDS: niaid.nih.gov/topics/hivaids/ and aidsinfo.nih.gov.

  • National Institute on Drug Abuse, NIH, offers facts about drug abuse and the link between it and HIV/AIDS: hiv.drugabuse.gov.

  • The Centers for Disease Control and Prevention provides up-to-date information on HIV/AIDS prevention: cdc.gov/hiv/topics.

Related Content

  • HIV/AIDS

    HIV/AIDS Teacher Guide

    Students read essays, conduct activities, and use actual data from the CDC and other sources to learn about HIV/AIDS and the spread of disease. (5 activities, 5 essays)

  • X-Times: Career Options

    X-Times: Career Options Reading

    Student magazine: Special issue featuring healthcare professionals who discuss why each chose his or her career, educational requirements needed to obtain the job, and day-to-day responsibilities.

  • X-Times: Microbes

    X-Times: Microbes Reading

    Student magazine: articles focusing on microbes, both helpful and harmful. Includes a special report, "HIV/AIDS: The Virus and the Epidemic."


Funding

Science Education Partnership Award, NIH

Science Education Partnership Award, NIH

MicroMatters
Grant Number: 5R25RR018605