Skip Navigation

Rocket Cars: Rocket Races

Author(s): Gregory L. Vogt, EdD, Barbara Z. Tharp, MS, Michael Vu, MS, and Nancy P. Moreno, PhD.
Rocket Cars: Rocket Races

Fully electric car built by 60 students for the Formula Student competition.
© Marvin Raaijmakers, CC-BY-SA 3.0.

  • Grades:
  • Length: Variable

Overview

Students learn about Newton’s Three Laws of Motion as they construct and test a lightweight “rocket” car propelled by the action/reaction force of air escaping from an inflated balloon.

This activity is from the Think Like an Engineer Teacher's Guide. Originally intended for use as an after-school program, the lessons in the unit may be used together to form the basis of a STEM teaching and learning experience for upper elementary and/or middle school students.

Teacher Background

What It’s About

All vehicles, whether designed for land, sea, air or space, are governed by the scientific principles stated in Isaac Newton’s Laws of Motion. In brief, the laws are as follow.

First Law

An unbalanced force is required to cause an object to change its state of motion or rest. Once in motion, an object will continue moving in a straight line until acted upon by an unbalanced force. Imagine two people pushing on each other. If they are equally strong, neither will move because the opposing forces are balanced. If one person is stronger than the other, the forces are unbalanced and the weaker person will be pushed backward.

Second Law

An object’s acceleration is directly proportional to the force exerted on it and inversely proportional to its mass. In other words, the less mass an object has, the more that object will accelerate when it is acted upon by an unbalanced force. Acceleration also can be increased if the force is increased (f=ma).

Third Law

Every action is accompanied by an equal and opposite reaction. When force is applied to an object, the object exerts an equal opposing force. Consider what happens when someone fires a shotgun. The pellets fly out of the barrel and the shooter is pushed back by a strong “kick.”

Rockets are an excellent example of the Laws of Motion at work. This activity demonstrates all three laws. Students construct and test a lightweight “rocket” car propelled by the action/reaction force of air escaping from an inflated balloon. The escaping air exerts an unbalanced force on the car, shifting it from a state of rest to a state of motion. The force of the balloon squeezing on air inside accelerates the car when the air is released. Because the car’s mass is very low, it impedes the acceleration minimally. If the car were heavier, it would accelerate more slowly. Finally, the balloon’s wall exerts an action force on the air, causing it to shoot out the nozzle. This creates an equal and opposite reaction force that propels the car. When the balloon’s air runs out, there is no more force to push the car, which coasts until friction brings it to a stop.

Related Content

  • Think Like an Engineer

    Think Like an Engineer Teacher Guide

    Students follow an engineer's approach as they identify problems, brainstorm solutions, design a plan, and build, test, refine, and produce a product or solution. (8 activities)


Funding

National Science Foundation

Grant Number: DRL-1028771